
 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 1 of 50

Apple II Computer Technical Information

ATTACH-BIOS Document
for

Apple II Pascal 1.1

Barry Haynes
Apple Computer Inc. -- January 12, 1980

Source
Call-APPLE Magazine Public Domain Pascal Disk # 6

May 2004

 This document is intended for Apple II Pascal internal applications
 writers, Vendors and Users who need to attach their own drivers to the
 system or who need more detailed information about the 1.1 BIOS. It is
 divided into two sections, one explaining how to use the ATTACH utility
 available through technical support and the other giving general
 information about the BIOS. It is a good idea to read this whole
 document before assuming something is missing or hasn't been completely
 explained. This document is intended for more advanced users who
 already know a fair amount about I/O devices and how to write device
 drivers. It is not intended to be a simple step by step description of
 how to write your first device driver, nor does it claim to be a
 complete description of all there is to know about the Pascal BIOS.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 2 of 50

 The Apple Pascal UCSD system has various levels of I/O that are each
 responsible for different types of actions. It was divided at UCSD
 into these levels to make it easy to bring up the system on various
 processors and also various configurations of the same processor and
 yet have things look the same to the Pascal level regardless of what
 was below that level. The levels are:

 LEVEL TYPES OF IO ACTIONS
 ----- -------------------

 Pascal READ & WRITE
 BLOCKREAD & BLOCKWRITE
 UNITREAD & UNITWRITE
 UNITCLEAR
 UNITSTATUS

 RSP (Runtime Support Package) This is part of the interpreter and
 is the middle man between the above
 types of I/O and the below types of
 I/O. All the above types are
 translated by the compiler and
 operating system into UNITREAD,
 UNITWRITE, UNITCLEAR and UNITSTATUS if
 they are not already in that form in
 the Pascal program. The RSP checks
 the legality of the parameters passed
 and reformats these calls into calls to
 the BIOS routines below. The RSP also
 expands DLE (blank suppression)
 characters, adds line feeds to
 carriage returns, checks for end of
 file (CTRL C from CONSOLE:), monitors
 UNITRW control word commands, makes
 calls to attached devices if present,
 echoes to the CONSOLE:.

 BIOS (Basic I/O Subsystem) This is the lowest level device
 driver routines. This is the level
 at which you can attach new drivers
 to replace or work with the regular
 system drivers and also attach drivers
 for devices that will be completely
 defined by you.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 3 of 50

 I.RECONFIGURING THE BIOS TO ADD YOUR OWN DRIVERS USING THE ATTACH UTILITY.

 INTRODUCTION

 With the Apple Pascal 1.1 System (both regular and runtime 1.1),
 there is an automatic method for you to configuer your own drivers
 into the system. This method requires you to write the drivers
 following certain rules and to use the programs ATTACHUD.CODE and
 SYSTEM.ATTACH provided through Apple Technical Support. At boot
 time, the initialization part of SYSTEM.PASCAL looks for the program
 SYSTEM.ATTACH on the boot drive. If it finds SYSTEM.ATTACH, it
 Xecutes it before Xecuting SYSTEM.STARTUP. SYSTEM.ATTACH will use
 the files ATTACH.DATA and ATTACH.DRIVERS which must also be on the
 boot disk. ATTACH.DATA is a file the developer will make using the
 program ATTACHUD. It tells SYSTEM.ATTACH the needed information
 about the drivers it will be attaching. ATTACH.DRIVERS is a file
 containing all the drivers to be attached and is constructed by the
 developer using the standard LIBRARY program. The drivers are put on
 the Pascal Heap below the point that a regular program can access it.
 They do take away Stack-Heap (= to the size of the drivers attached)
 space from that available to Pascal code files but this should not be
 a problem unless the drivers are very large or the code files very
 hungry in their use of memory. Since these drivers are configured
 into the system after the operating system starts to run, this method
 will not work for configuring drivers for devices that the system
 must cold boot from. Some of supporting code in the RSP, boot and
 Bios may make the task of bringing up boot drivers easier though.
 The advantages to this kind of setup are:

 1. Software Vendors can use the ATTACHUD program to put
 their own drivers into the system at boot time. This will
 be invisible to the user.

 2. There can be no problems losing drivers due to improper heap
 management since the drivers are put on the heap by the
 operating system and before any user program can allocate heap
 space.

 3. This method does not freeze parts of the system to special
 memory locations since it enforces the clean methodology of
 using relocatable drivers.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 4 of 50

 USING ATTACHUD

 ATTACHUD.CODE will ask you questions about the drivers you want to
 attach to the system. It makes a file called ATTACH.DATA which tells
 SYSTEM.ATTACH which drivers to attach to the system, what unit
 numbers to attach them to and other information. The options covered
 by ATTACHUD are:

 1. A driver can be attached to one of the system devices, then
 all I/O to this device (PRINTER: for example) will go to
 this new driver. In the case of a new driver for a disk
 device the user will have to specify which of the 6 standard
 disk units will go to this new driver. This will allow
 replacement of standard drivers with custom ones without
 having to restrict the I/O interface to UNITREAD and
 UNITWRITE as is the case with option 2.

 2. A driver can be attached to one of 16 userdevices. I/O to
 these will be done with UNITREAD and UNITWRITE to device
 numbers 128-143.

 3. A method will be included to allow the attached driver to
 start on an N byte boundry. The driver writer will be
 responsible for aligning his code from that point.

 4. More than one unit can be attached to the same driver. This
 way only one copy of the driver resides in memory and I/O to
 all the attached units goes to this one driver. It is up to
 the driver to decide which unit's I/O it is doing. How this
 is done is explained below.

 5. The initialize routine for any attached driver can be called by
 SYSTEM.ATTACH after it has attached the driver and before any
 programs can be Xecuted.

 6. In case any of your programs use the Hires pages, you can specify
 in ATTACHUD that drivers must not be put on the heap over these
 areas. Your drivers would have to be quite large before they could
 possibly overlap the Hires pages.

 Follow through this example of a session with ATTACHUD where the
 options available are completely described. First Xecute ATTACHUD:

 You will be given the prompt:

 Apple Pascal Attachud [1.1]

 Enter name of attach data file:

 This is asking for what you want the output file from this session
 with ATTACHUD to be called. You could call it ATTACH.DATA or some other
 name and then rename it to ATTACH.DATA when you put it on the boot disk
 with SYSTEM.ATTACH.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 5 of 50

 If you ever get a message of the form:

 ERROR => some error
 Try again (RETURN to exit program):

 then just retype what was requested on the previous prompt after
 deciding what mistake you made while typing it the first time.

 The next prompt is:

 These next questions will determine if
 attached drivers can reside in the hires
 pages. It will be assumed they can for the
 page in question if you answer no to the
 prompt for that page.
 Will you ever use the (2000.3FFF hex)
 hires page?

 Followed by:

 Will you ever use the (4000.5FFF hex)
 hires page?

 You should answer yes to the question for a particular Hires page if
 you will ever be running a program that uses that Hires page while the
 drivers are Attached. You don't want the possibility of your driver
 residing in the Hires page if that page will be clobbered by one of
 your programs. After answering the Hires questions you will be asked
 the following questions once for each driver you will be attaching:

 What is the name of this driver? This
 must be the .PROC name in its assembly
 source (RETURN to exit program):

 This must be the name of one of the drivers in the ATTACH.DRIVERS that
 will be used with this ATTACH.DATA. The length of this name must not be
 more than 8 characters. After entering the name you will be asked:

 Which unit numbers should refer to this
 device driver?

 Unit number (RETURN to abort program):

 You must enter a unit number in the range 1,2,4..12,128..143 or will
 be given an error message. You cannot attach a character unit (CONSOLE:,
 PRINTER: or REMOTE:) to the same driver as a block structured unit and if
 you try you will be given the message:

 You can''t attach a character unit and
 a block unit to the same driver. I
 will remove the last unit# you entered.
 Type RETURN to continue:

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 6 of 50

 If you don't get the above error, you will be asked:

 Do you want this unit to be
 initialized at boot time?

 A yes response will put the unit number just entered on a list of
 units that SYSTEM.ATTACH will call UNITCLEAR on after attaching all
 the drivers. This gives you a way to have the system make an initialize
 call on your attached unit at boot time. A no response will mean
 that no boot time init call will be made on this unit to the driver
 you just attached.

 You will be eventually asked:

 Do you want another unit number to refer
 to this device driver?:

 A yes response will get you to the Unit number prompt again and a no
 response will get you to the prompt:

 Do you want this driver to start on a
 certain byte boundary?

 A yes here will give you more prompts:

 The boundry can be between 0 and 256.
 0=>Driver can start anywhere.(default)
 8=>Driver starts on 8 byte boundary.
 N=>Driver starts on N byte boundary.
 256=>Driver starts on 256 byte PAGE boundary.
 Enter boundary (RETURN to exit program):

 And the last line of the prompt will repeat until you enter a
 boundary in the correct range. The boundary refers to the memory
 location where the first byte of the driver is loaded. If your
 driver needs to be aligned on some N byte boundary you can assure it
 will be using this mechanism. if you know how the driver's origin is
 aligned, You can align internal parts of your driver however you
 want. Finally you will get to the prompt:

 Do you want to attach another driver?

 And if you answer Yes to this you will return to the 'What is the name
 of this driver' prompt and answering No will end the program, saving
 the data file you have made.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 7 of 50

 THE DRIVER

 Drivers must be written in assembly using the Pascal Assembler.
 They must not use the .ABSOLUTE option, so the drivers can be
 relocated as they are brought in by the system. Each driver must be
 assembled separately with no external references. When all drivers
 are assembled, use the LIBRARY program (in the same way you would use
 it to put units into a library) to put all the drivers in one file.
 Name this file SYSTEM.DRIVERS. See further explanation of making
 SYSTEM.DRIVERS below.

 Considerations for all drivers:

 1. Study the examples below as certain information is only
 documented there.

 2. Refer to the Apple II Pascal memory map below and you will see
 that parts of the interpreter and BIOS reside in the same address
 range and are bank-switched. The system automatically folds in
 the BIOS for drivers added using ATTACH. Most of these drivers
 will have to make calls to CONCK if they want type ahead to
 continue to work properly. CONCK is the BIOS routine that
 monitors the keyboard. See the example drivers below to be sure
 you are doing this correctly. You cannot call CONCK through the
 CONCK vector at BF0A (see BIOS part of this document) because
 this call would go through the same mechanism used to get to your
 driver and the return address to Pascal would be lost.

 3. All attached drivers must be written with one common entry point
 for read, write, init and status. The driver will use the Xreg
 contents to decide which type of I/O call this is and jump to the
 appropriate place within it's code. The Xreg is decoded as
 follows:

 0 -->read (no bits set)
 1 -->write (bit 0 set)
 2 -->init (bit 1 set) { The Pascal statement
 UNITCLEAR(UNITNUMBER); makes an init call for
 unit UNITNUMBER }
 4 -->status (bit 2 set)

 4. The drivers must also pop a return address off the stack, save
 it and later push it to do a RTS when the driver is finished. All
 other parameters must be removed from the stack by the driver.
 For all calls, the return address will be the top word on the
 stack.

 5. SYSTEM.ATTACH will make a copy of the normal system jump vector
 (the vector after the fold) and put this on the heap. There will
 be a pointer to this vector at 0E2. Your drivers can use this
 vector to get to the normal system drivers for device numbers 1..12.
 See example below.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 8 of 50

 6. All drivers must pass back a completion code in the X register
 corresponding to the table on page 280 of the 1.1 "Apple II Apple
 Pascal Operating System Reference Manual".

 7. In references below to parameters passed on the stack, all
 parameters are one word parameters so they require two bytes to
 be popped from the stack by the driver.

 8. Control word format for Unitread & Unitwrite

 bits 15..13 12..6 5 4 3 2 1..0
 user reserved type B type A nocrlf nospec reserved
 defined for future chars chars for future
 functions expansion expansion

 type B =0 ==>System will check for CTRL S & F from CONSOLE:
 during the time of this Unitio call.
 =1 ==>System will not check for CTRL S & F during this
 Unitio.
 type A =0 ==>If using Apple Keyboard, system will check for
 CTRL A,Z,K,W & E from CONSOLE: during the period
 of this Unitio.
 =1 ==>System will not check for the chars during
 this Unitio.
 nocrlf =0 ==>line feeds are added to carriage returns by the
 Interpreter.
 =1 ==>no line feeds are added ...
 nospec =0 ==>DLE's (blank suppression code) are expanded on
 output and the EOF character is detected on input
 =1 ==>nothing special is done to DLE's on output and
 EOF on input.

 default setting for all control word bits = 0.

 9. Control word format for UNITSTATUS

 bits 15..13 12..2 1 0
 user reserved for direction
 defined for future purpose

 direction =0 ==>Status of output channel is requested
 =1 ==>Status of input ...
 purpose =0 ==>Call is for unit status
 =1 ==>Call is for unit control

 10. These are the new vectors and routines added to the BIOS to make
 attach work. The RSP, bootstrap, and readseg were also modified
 to allow for attaches.

UDJMPVEC ;Jump vector for user devices, offset=0 => unattached device.
 ;The correct addresses are initialized by SYSTEM.ATTACH
 ;See locations section of BIOS part below for pointers to
 ;this vector.
 JMP 0 ;Unit 128

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 9 of 50

 JMP 0 ;Unit 129
 .
 .
 .
 JMP 0 ;Unit 143

DISKNUM ;If high byte=FF then
 ; device is not a disk drive
 ;else
 ; if high byte=0 then
 ; device is a regular disk drive and low byte=drive #
 ; else
 ; driver for this disk drive has been attached by SYSTEM.ATTACH
 ; and the driver address is stored in this word.
 ; (Driver address has to be the address-1 for RTS in PSUBDR
 ; to work correctly, remember this for ATTACH. PSUBDR is
 ; listed below.)
 ;See locations section of BIOS part below for pointers to
 ;this vector.
 .WORD 0FFFF ;Unit #1
 .WORD 0FFFF ;Unit #2 (ATTACH would modify the words
 .WORD 0FFFF ;Unit #3 for units 4,5,9..12 if a
 .WORD 0 ;Unit #4 different disk driver were
 .WORD 1 ;Unit #5 attached to any of them)
 .WORD 0FFFF ;Unit #6
 .WORD 0FFFF ;Unit #7
 .WORD 0FFFF ;Unit #8
 .WORD 4 ;Unit #9
 .WORD 5 ;Unit #10
 .WORD 2 ;Unit #11
 .WORD 3 ;Unit #12

UDRWIS ;Routine to get to an attached driver through UDJMPVEC
 ;Assume unit# in Areg & operation to be performed in Xreg.
 ;See the jump vector in the BIOS sections to see how you
 ;get to this routine.
 STA TT1
 AND #7F ;Clear top bit of unit#
 STA TT2 ;Make address in UDJMPVEC table
 ASL A ;Address=Areg*3 + base of table
 CLC
 ADC TT2 ;Now we have (Areg*3).
 ADC #JVECTRS ;Add in low byte of base of table having
 STA TT2 ;no carry problem with only 16 UD's.
 LDA #0
 ADC JVECTRS+1 ;JVECTRS is a word pointing to the base
 ;of UDJMPVEC.
 STA TT2+1
 LDA TT1
 JMP @TT2

PSUBDR ;Routine to get to an attached driver through DISKNUM
 ;We assume on entry, Areg=unit#, Yreg=DISKNUM

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 10 of 50

 ;offset & Xreg=the command to be performed by the substituted
 ;disk driver.
 ;See the jump vector in the BIOS sections to see how you
 ;get to this routine.
 STA TT1 ;Save unit#.
 LDA DISKNUM-1,Y ;Store MSB of driver address.
 PHA
 LDA DISKNUM-2,Y ;Store LSB of driver address.
 PHA
 LDA TT1 ;Restore unit# to Areg.
 RTS ;Jump to substituted driver. This assumes
 ;the driver address in DISKNUM =
 ;(ADDRESS OF DRIVER)-1 for the RTS to work

 Special considerations when attaching drivers for the system
 devices, unitnumbers 1..12.

 A. Character Oriented Devices (Pass the character to be read-written
 in the A-register and make Bios calls one character at a time
 from RSP level. On entry, the unit number will be in the Y
 register in case you wanted to attach all character oriented
 devices to the same driver). If you attach REMOTE: & or PRINTER:
 to the same driver as CONSOLE:, all will have their jump vectors
 pointing to the start of the driver+3 bytes. See further
 discussion on this below.

 Units 1 & 2 (CONSOLE: and SYSTERM:)

 1. These must both go to the same driver.
 2. The system CONCK routine will be patched to jump to the start of
 the driver. The CONCK routine gets characters entered at the
 keyboard and fills the type ahead buffer. See the example CONSOLE:
 driver below.
 3. Because of item 2, the entry point for normal calls (not CONCK
 calls) to the attached driver will be 3 bytes beyond the start
 of the driver.
 4. The interpreter takes care of expanding blank suppression codes
 (DLE's), echo to the screen, EOF (the end of file character), and
 adding line feeds to every carriage return. Your driver doesn't
 need to do this.
 5. CONSOLE: read and write have only the return address on the stack.
 The stack for CONSOLE: init looks like:

 POINTER TO BREAK VECTOR (This should be stored at
 location BF16..BF17 by CONSOLE:
 init.)
 POINTER TO SYSCOM (This should be stored at
 location F8..F9 by CONSOLE:
 init.)
 (Also at init time, the Flush
 and Start/Stop conditions
 should be set to normal and
 the type-ahead queue should
 be emptied.)

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 11 of 50

 RETURN ADDRESS <--TOS (top of stack)
 The stack for CONSOLE: status looks like:
 POINTER TO STATUS RECORD
 CONTROL WORD
 RETURN ADDRESS <--TOS

 6. A status request should return, in the first word of the status
 record, the number of characters currently queued in the direction
 asked for. This is the number of characters in the type-ahead
 buffer. If no type-ahead is being used then output status should
 always return a 0 and input status a 1 if a char is waiting to be
 read, otherwise a 0.
 7. Since we are using 7 bit ASCII codes, the CONSOLE: read routine
 should zero the high order bit of all characters it reads from
 the keyboard and passes back to Pascal (to the RSP). The
 CONSOLE: write routine should transfer all 8 bits as received
 from the RSP since many devices use 8 bit control codes.
 8. The RSP will send both upper and lower case chars to the CONSOLE:
 write routine. The write routine should map the lower to upper
 if the device cannot handle lower case.
 9. CONSOLE: Output Requirements:
 A. CR (0D hex) A carriage return should move the cursor to the
 beginning of the current line.
 B. LF (0A hex) A line feed should move the cursor to the next line
 but not change the column position. If the cursor is on the
 last line on the screen when a line feed is sent, the rest of
 the screen should scroll up one line and the bottom line be
 cleared.
 C. BELL (07 hex) A sound should be made if possible when the
 CONSOLE: gets 07. If making a sound is not possible then
 ignore the 07.
 D. SP (20 hex) Place a space at the current cursor position
 overwriting whatever is there. Move the cursor to the next
 column. If the cursor is on the last column of a line, it is
 best if the cursor stays where it is after the space fills that
 position. If the cursor is on the last column of the last line
 on the screen, it is also best if the cursor remains in that
 position and the screen does not scroll. These are the
 prefered actions of the cursor at end of line & end of screen;
 in the strict sense, the actions of the cursor in these
 circumstances are undefined.
 E. NUL (00 hex) When a Null is sent to the CONSOLE: from the
 RSP, the CONSOLE: should delay for the ammount of time
 required to write one character but the state of the screen
 should not change.
 F. All printable characters should be written to the screen and
 the cursor should move in the same way it does for SP.
 G. See the discussion on pages 199-215 in the 1.1 Operating
 System Reference Manual for further requirements and
 information.
 10. CONSOLE: Input Requirements:
 A. The RSP takes care of echoing characters to the screen typed
 from the CONSOLE: keyboard.
 (below items optional The Start/Stop, Flush & Break chars are

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 12 of 50

 redefinable; see 9G above for more info.)
 B. The Start/Stop character is detected by CONCK and is used
 to stop all processing until the character is received a
 second time. When the character is received (see 9G above
 for more info) one should loop in CONCK continuing to process
 other characters until:
 1. the S/S char is received again
 2. the Break char is received
 In case 1, the suspended processing should continue as it
 was before the first S/S was typed. Action needed for the
 Break char is described below. The S/S char is never returned
 to the RSP and CONSOLE: type-ahead, if implemented, should
 continue during the suspended state. Offset from SYSCOM to this
 char is 85 decimal. (This and the next 2 chars are redefinable
 by the Setup program and SYSCOM is the system area that keeps
 track of this info. The pointer to the start of SYSCOM is
 passed to the CONSOLE: init routine and is stored at
 F8..F9 hex.)
 C. The Flush character will stop all output and echoing to the
 CONSOLE: until it's second occurEnce (see 9G above). CONCK
 detects this and must set a flag to tell the CONSOLE:
 output routine to ignore characters while the flag is set. If
 the CONSOLE: is re-initialized or a Break char is received, the
 flush state should be turned off. Flush is never returned to
 the RSP. Flush only stops CONSOLE: output, other processing
 continues. Offset from SYSCOM to this char is 83 decimal.
 D. The Break char should cause CONCK to jump to the location
 stored at BF16. This location is also passed to the CONSOLE:
 init routine which stores it at BF16. The break char is never
 returned to the RSP and it should remove the system from
 Stop or Flush mode if it is in either mode. Offset from
 SYSCOM to this char is 84 decimal.
 E. Type-ahead should be implemented in CONCK by storing
 characters typed at the keyboard in a queue until they
 are requested by a CONSOLE: read from Pascal. When the
 queue fills, further characters should be ignored and
 a bell sounded when they are typed. The length of the
 queue should be at least 20 characters.
 11. For more information on CONSOLE: requirements, see pages 199-
 216 of the 1.1 Operating System Reference Manual.

 Unit 6 (the PRINTER:)

 1. The interpreter takes care of expanding blank suppression codes
 (DLE's), EOF (the end of file character), and adding line feeds
 to every carriage return.
 2. PRINTER: read,write and init have only the return address on the
 stack. PRINTER: status has the same items on the stack as CONSOLE:
 status. PRINTER: init should cause the PRINTER: to do a carriage
 return and a line feed and throw away any characters buffered to
 be printed. No form feed should be done.
 3. For status, return in the first word of the status record the
 number of bytes buffered in the direction asked for; if this
 cannot be determined by your PRINTER:, return a 0.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 13 of 50

 4. The PRINTER: write routine must buffer a line and send it all at
 once if your PRINTER: can only receive data that way.
 5. Line Delimiter characters:
 A. CR (hex 0D) A carriage return should cause the PRINTER: to print
 the current line and return the carriage to the first column.
 An automatic line feed should not be done by the PRINTER:
 driver when it reads a CR.
 B. LF (hex 0A) The RSP will send line feeds to the PRINTER: driver
 after each carriage return. This should cause the PRINTER: to
 advance to the next line. If the PRINTER: must also do a
 carriage return when it is given a line feed, then this is
 O.K.
 C. FF (hex 0C) This should cause the PRINTER: to move the paper to
 top of form and do a carriage return. If top of form is not
 possible on your PRINTER:, do a carriage return followed by a
 line feed.
 6. It is assumed that input cannot be received from the PRINTER:.
 See the BIOS section for a discussion of how to get input from
 the PRINTER:. Normally, trying to get input from the PRINTER:
 should return completion error code #3.

 Units 7 (REMOTE: in) & 8 (REMOTE: out)

 1. These must both go to the same driver.
 2. The interpreter takes care of expanding blank suppression codes
 (DLE's), EOF and adding line feeds to every carriage return.
 3. Same stack setup as the PRINTER:.
 4. Status should return in first word of status vector the number of
 bytes buffered for the direction specified in the control word,
 0 if you have no way to check.
 5. This unit is supposed to be an RS-232 serial line for many
 different applications so it is necessary that it transfer the
 data without modifying it in any way. The transfer rate default
 is 9600 baud.
 6. It would be nice if the input to REMOTE: could be buffered in the
 same way input to the CONSOLE: is but this is not an absolute
 requirement.
 7. REMOTE: init should set up the REMOTE: device so it is ready to
 read and write.

 B. Block Structured Devices
 Units 4 (the boot unit),5,9,10,11,12.
 1. These units are assumed to be block structured devices, the
 drivers for these units must do their own Pascal Block to
 Track-Sector conversions.

 The UCSD system assumes the disk device is a 0-based consecutive
 array of 512 byte logical blocks. All UCSD Pascal disks must
 have this logical structure no matter what their actual physical
 structure or size are. The physical allocation schemes for
 information on different types of disks are arranged with sectors
 that are of various sizes that depend on the hardware of the
 particular disk device used. The driver must convert the Pascal
 block # to the appropriate track & sector # of where that block

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 14 of 50

 is stored on it's disk device. This could be a floppy or hard
 disk or some other type of device. It doesn't really matter, so
 long as your driver maps the Pascal Block to the cOrrect place and
 continues to do so for the length (byte count) required for the
 UnitIO operation.

 The Pascal system uses logical blocks 0 & 1 for it's bootstrap
 code. These logical blocks should not be used for anything
 else and should therefore only be available to Pascal through
 direct UNITREAD & UNITWRITE operations and not accessable by
 the system through any other means. This document will not
 attempt to describe the boot sequence & does not attempt to
 give you enough information to attach another driver or device
 to unit #4: so you can cold boot from that unit.

 When a UNITWRITE is done to disk where the byte count MOD 512
 is not equal to 0 (this means the last block included in the
 write would be partially written to according to the byte count),
 it is undefined whether garbage is written into the remaining
 part of this last block. So you may write a whole block anyhow
 if that is more efficient and the Pascal system will not suffer
 any bad consequences.

 When a UNITREAD is done from a disk you are not allowed to
 overwrite into the unused part of the last block (if there is
 an unused part due to byte count MOD 512 <> 0). You must only
 send the number of bytes asked for because you could clobber
 memory having some other valid use if you wrote extra bytes.
 You will have to buffer the last sector inside your disk
 read routine then transfer exactly the number of bytes from
 this last sector needed to add up to the total bytes requested.
 2. The unit number will always be in the A register.
 3. The stack setup for read and write is:
 CONTROL WORD (The MODE parameter mentioned in the
 1.1 Language Ref Manual on page 41)
 DRIVE NUMBER
 BUFFER ADDRESS
 BYTE COUNT
 BLOCK NUMBER
 RETURN ADDRESS <--TOS

 For init there is only the return address on the stack and
 for status the setup is the same as for the CONSOLE:.
 4. Status requests should return the following in the status
 record:
 word1:Number of bytes buffered in the direction asked
 for in the control word. Return 0 if you have no
 way of checking.
 word2:Number of bytes per sector.
 word3:Number of sectors per track.
 word4:Number of tracks per disk.

 C. Other
 Unit 3

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 15 of 50

 1. This unit has no meaning for the Apple II system except that
 UNITCLEAR on this unit sets text mode.

 Considerations when attaching drivers for user defined devices
 numbers 128-143.

 These unit numbers are provided for you to do whatever you want
 with them. you can define what they do except for the following
 protocols.

 1. Follow the considerations for all drivers listed above.
 2. The unit number will always be in the A register.
 3. The stack setup for read and write is:

 CONTROL WORD
 DRIVE NUMBER
 BUFFER ADDRESS
 BYTE COUNT
 BLOCK NUMBER
 RETURN ADDRESS <--TOS

 For init there is only the return address on the stack and
 for status the setup is the same as for the CONSOLE:.

 This is a sample driver for a user defined device.

 ;Locations 0..35 hex may be used as pure temps. One should
 ;never assume these locations won't be clobbered if you leave
 ;the environment of the driver itself. ("leaving" includes
 ;calls to CONCK).

 CONCKADR .EQU 02

 ;Only one .PROC may occur in a driver, each driver to be
 ;ATTACHED must be assembled separately using the Pascal
 ;assembler and can have no external references.

 .PROC U128DR

 STA TEMP1 ;Save Areg contents (unit#)
 PLA
 STA RETURN
 PLA
 STA RETURN+1
 TXA ;Use the X reg to tell you what kind of
 ;call this is.
 CMP #2
 BEQ INIT
 CMP #4
 BEQ STATUS
 CMP #0
 BEQ PMS
 CMP #1
 BEQ PMS

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 16 of 50

 ;Could have error code here
 JMP RET

 PMS PLA ;Get the parameters
 STA BLKNUM
 PLA
 STA BLKNUM+1
 PLA
 STA BYTECNT
 PLA
 STA BYTECNT+1
 PLA
 STA BUFADR
 PLA
 STA BUFADR+1
 PLA
 STA UNITNUM ;Also in TEMP1
 PLA
 STA UNITNUM+1 ;Should always be 0
 PLA
 STA CONTROL
 PLA
 STA CONTROL+1
 TXA
 BNE WRITE

 READ JSR GOTOCK
 ;Your driver's code for a read
 (If more than one unit were attached to this driver, this
 code could jump to various places depending on the contents
 of the Areg stored in TEMP1)
 JMP RET

 WRITE JSR GOTOCK
 ;Your driver's code for a write
 JMP RET

 ;If you wanted to call CONCK whenever your device did a read
 ;or write, you would use this routine:
 CKR .WORD CONCKRTN-1
 GOTOCK LDY #55. ;Offset to address of CONCK
 LDA @0E2,Y
 STA CONCKADR
 INY
 LDA @0E2,Y
 STA CONCKADR+1
 LDA CKR+1 ;Set it up so you return to CONCKRTN after
 PHA ;the CONCK call.
 LDA CKR
 PHA
 JMP @CONCKADR ;Jump to CONCK
 CONCKRTN RTS ;Return to caller.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 17 of 50

 INIT ;Your driver's code for init
 JMP RET

 STATUS PLA
 STA CONTROL
 PLA
 STA CONTROL+1
 PLA
 STA BUFADR ;Address of status record.
 PLA
 STA BUFADR+1
 ;Your driver's code for status

 RET LDA RETURN+1
 PHA
 LDA RETURN
 PHA
 LDA TEMP1
 RTS

 RETURN .WORD 0 ;Can't use 0 page for these since we leave
 TEMP1 .WORD 0 ;our environment when going to CONCK.
 CONTROL .WORD 0
 UNITNUM .WORD 0
 BUFADR .WORD 0
 BYTECNT .WORD 0
 BLKNUM .WORD 0

 .END

 This is a sample driver for a CONSOLE: driver replacement.

 ROUTINE .EQU 02
 TEMP1 .EQU 04

 .PROC CKATCH

 JMP CONCKHDL ;SYSTEM.ATTACH will patch the start of CONCK
 ;to jump here when you attach a driver to the
 ;CONSOLE:.

 ;We are not popping the return address from
 ;the stack cause we'll return from the system
 ;routine we call from this driver.
 STA TEMP1 ;All the read,write,init and stat calls will
 ;jump here (the starting address of your
 ;CONSOLE: driver+3).

 STY TEMP1+1
 TXA
 ;This example shows you how to have your
 ;own code for the CONSOLE: as well as using
 ;the system CONSOLE: routines. If you want
 ;to replace the system routines completely,

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 18 of 50

 ;you need to pull the return address here.
 BEQ READ
 CMP #1
 BEQ WRITE
 CMP #2
 BEQ INIT
 CMP #4
 BEQ STATUS

 ;Error code here

 READ ;Your driver's code for a read

 LDY #1 ;offset to address of CONSOLE: read in
 ;the copy of the jmp vector made by
 ;SYSTEM.ATTACH. See the jump vectors in the
 ;BIOS section below to see how we get the
 ;offsets.

 BNE GET

 ;You would have a JMP RET here (see example for user defined
 ;device) if you were not using the system CONSOLE: routines
 ;as well.

 WRITE ;Your driver's code for a write
 LDY #4
 BNE GET

 INIT ;Your driver's code for init
 LDY #7
 BNE GET

 STATUS ;Your driver's code for status
 LDY #43.

 GET LDA @0E2,Y ;At E2 is a pointer to the copy of the
 ;jump vector made by SYSTEM.ATTACH before
 ;it was modified to attach your drivers.

 STA ROUTINE
 INY
 LDA @0E2,Y
 STA ROUTINE+1
 LDY TEMP1+1 ;Restore registers
 LDA TEMP1
 JMP @ROUTINE ;Go to the original CONSOLE: driver for this
 ;I/O command. You will return from there; the
 ;BIOS is already folded in due to the way your
 ;driver was attached by SYSTEM.ATTACH.

 CONCKHDL PHP ;Duplicate the 1st three instructions of CONCK
 PHA ;as they were patched by SYSTEM.ATTACH to jump
 ;TXA below ;to the 1st instruction of this driver.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 19 of 50

 ;Here you can put the code for your own part of CONCK (you
 ;may want to check some additional device like a keypad or
 ;something or you may want to replace the system CONCK
 ;routine alltogether. If you do this, you must save the rest
 ;of the machine state and return it when you are finished.
 ;See example below.

 TYA ;Save Yreg contents for a second.
 PHA

 ;This code gets us to the system CONCK routine.
 CLC
 LDY #55. ;Offset to the address of system CONCK in the
 ;copy of the original jmp vector.

 LDA @0E2,Y
 ADC #3 ;Add 3 so you enter right after the three
 ;instructions you duplicated at CONCKHDL.
 STA ROUTINE
 INY
 LDA @0E2,Y
 ADC #0
 STA ROUTINE+1
 PLA ;Restore Yreg.
 TAY
 TXA ;Last of CONCK instructions SYSTEM.ATTACH
 ;overwrote with the jmp to the start of this
 ;driver.

 JMP @ROUTINE ;Goto system CONCK and return from there.

 .END

 Here is another alternative for the CONCKHDL part of the above
 program.

 CKRTN .WORD CONCKRTN-1
 CONCKHDL ; 1.If you don't care about type-ahead, this could be
 ; simply the following code (assuming your CONSOLE:
 ; read gets a character directly from your CONSOLE:
 ; device whenever it is called) :

 PHP
 INC RANDL ;RANDL is a permanent word at BF13 used in
 ;the built in random function.
 BNE $1
 INC RANDH ;RANDH
 $1 PLP
 RTS

 ; 2.If you want type-ahead, this code should check to see

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 20 of 50

 ;if there is a character available and stuff it into a type-
 ;ahead buffer.
 ; 3.If you are using this with the regular CONCK (extra keypad
 ;to check or statistics for example), then you can do it this
 ;way.

 PHP ;Save state of machine
 PHA
 TXA
 PHA
 TYA
 PHA

 ;Put your driver's part of CONCK here (gives your driver
 ;priority)

 LDA CKRTN+1 ;Set up things to return from reg CONCK
 PHA
 LDA CKRTN
 PHA
 PHA ;Push garbage to account for other pushes done
 PHA ;in first three bytes of CONCK

 CLC ;Setup to call CONCK
 LDY #55. ;Offset to the address of system CONCK in the
 ;copy of the original jmp vector.

 LDA @0E2,Y
 ADC #3 ;Add 3 so you enter right after the three
 ;instructions you duplicated at CONCKHDL.
 STA ROUTINE
 INY
 LDA @0E2,Y
 ADC #0
 STA ROUTINE+1
 ;In this example we don't have to worry about
 ;the machine state here as we are restoring
 ;it after we call CONCK

 JMP @ROUTINE ;Goto system CONCK and return to CONCKRTN

 CONCKRTN PLA ;Restore state of machine
 TAY
 PLA
 TAX
 PLA
 PLP
 RTS ;Return to the guy who called CONCK.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 21 of 50

 MAKING ATTACH.DRIVERS

 1. Xecute the standard 1.1 LIBRARY program.
 2. The output code file should be ATTACH.DRIVERS or could be named
 somethine else and renamed ATTACH.DRIVERS when you put it on the
 boot disk.
 3. For the Link code file use the code file of your first driver.
 4. Copy its slot #1 into slot #0 of ATTACH.DRIVERS.
 5. As long as you have more drivers to add, use N(EW to get another
 Link code file and copy it's slot #1 into slots #2,3,...15 of
 ATTACH.DRIVERS.
 6. When done, type 'Q' then 'N' followed by a RETURN for the notice.
 See the 1.1 Operating System Reference Manual for further info on
 the LIBRARY program.

 THE WORKINGS OF SYSTEM.ATTACH

 If it is on the boot disk, SYSTEM.ATTACH is Xecuted by the operating
 system (both regular 1.1 and runtime 1.1) before SYSTEM.STARTUP. The
 1.1 runtime system will use a runtime version of SYSTEM.ATTACH.

 The error messages that can be generated by SYSTEM.ATTACH are:

 1. ERROR =>No records in ATTACH.DATA
 2. ERROR =>Reading segment dictionary of ATTACH.DRIVERS
 3. ERROR =>reading driver
 4. ERROR =>A needed driver is not in ATTACH.DRIVERS
 5. ERROR =>ATTACH.DATA needed by SYSTEM.ATTACH
 6. ERROR =>ATTACH.DRIVERS needed by SYSTEM.ATTACH

 If all goes well attaching drivers, SYSTEM.ATTACH will display
 nothing unusual in the regular boot sequence except for extra disk
 accesses and anything done in the init calls to any of the attached
 devices.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 22 of 50

 II.BIOS

 This section explains things in the BIOS area that are extensions
 and modifications that were added to Apple Pascal version 1.1 that were
 different or not there at all in Apple Pascal version 1.0 (UCSD version
 II.1).

 1. The disk routines have been modified to handle interrupts (So
 interrupt driven devices could be attached to 1.1 Pascal) if they are
 being used. To use interrupts, one would have to attach an
 interrupt driver, then patch the IRQ vector (FFFE hex) to point to
 this driver. The Pascal system is defined to come up with interrupts
 turned off so, once the driver is brought in and the IRQ patched,
 interrupts must be turned on. The driver's init call could patch the
 IRQ and turn on interrupts. The disk routines save the current state
 of the system and turn interrupts off only during crucial time
 periods, the state of the system is returned during non crucial time
 periods so interrupts can be handled. This has not been tested at
 this time, so there is no data concerning the maximum interrupt response
 time delay.

 2. The control word parameter in UNITREAD and UNITWRITE was not passed
 on to the BIOS level routines from the RSP level. This has been done
 in 1.1 to allow the changes to the control word listed below under
 special character checking and also so user defined units or attached
 Pascal units can use the user defined bits of the control word.

 3. IORESULTS 128-255 are available for user definition on user defined
 devices.

 4. UNITSTATUS has been implemented in the Apple II Pascal 1.1 system.
 This works for the Pascal system units as described in the ATTACH
 part of this document. For user defined units, Unitstatus can be
 used for whatever necessary.

 Unitstatus is a procedure that can be called from the Pascal level in
 the same way Unitread can. It has three parameters:

 1. unit#.
 2. pointer to a buffer.
 (any size buffer you want of type Packed
 Array of Char)
 3. control word.

 When you make a Unitstatus call from Pascal, the call should look
 like:

 UNITSTATUS (UNITNUM , PAC , CONTROL);

 Where UNITNUM & CONTROL are integers and PAC is a Packed Array of
 CHAR or a STRING and may be subscripted to indicate a starting
 position to transfer data to or from. See further information on
 what Unitstatus is defined to do for the various devices in the

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 23 of 50

 ATTACH part of this document.

 The control word will tell the status procedure for a particular unit
 what information about the unit you want. Bit 0 of this word should
 equal 1 for input status and 0 for output status. Unitstatus is
 implemented with bit 1 of the control word =1 meaning the call is for
 unit control. When this bit =0 the call is for unitstatus. In all
 cases bits 2-12 are reserved for system use and bits 13-15 are
 available for user defined funtions.

 An entry in the jump vector has been made for each of the system
 Unitstatus calls, i.e. CONSOLESTAT,PRINTERSTAT,REMOTESTAT,etc..
 Unitstatus calls to a user defined device (128-143) will all go
 through the same jump vector location.

 5. The handling of CTRL-C by the Apple bios was non standard in 1.0. The
 UCSD BIOS definition specifies that a CTRL-C coming from REMOTE: or the
 PRINTER: should be placed in the input buffer and then no more characters
 should be received. Our bios did fill the buffer with nulls
 including the place where the CTRL-C was to go. Apple Pascal's BIOS now
 conforms to the standard definition, where the null filling of the buffer
 is done only when CTRL-C comes from the CONSOLE: (#1:).

 6. The unitio routines can be accessed from assembly procedures by
 pushing the correct parameters on the stack and using the jump vector
 to get to the BIOS routine. A seperate document needs to be
 written describing how this is done and pointing out the problems
 doing it in the case of the CONSOLE:,SYSTERM:,PRINTER: & REMOTE: units.
 These problems are concerned with the special character handling done
 in the RSP for these units. The assembly procedures calling the
 pascal drivers for these units would either have to repeat portions
 of the RSP code themselves or not get the special character handling
 provided by the RSP. Calling the CONSOLE: init routine requires
 pointers to syscom and the break routine to be passed on the stack.
 These pointers are now stored in a fixed location so assembly
 routines wanting to call coninit can get at them. See the locations
 section.

 7. Suppression of Special Character Checking.

 Special characters in the Pascal system are of three types:

 A. Chars used to control the 40 character screen. These are
 ctrl-A,Z,W,E & K.

 B. Pascal system control chars for general CONSOLE: use. These are
 ctrl-S & F.

 C. Types A & B are checked for by the CONCK funtion in the bios.
 There are other special chars checked for in the RSP. These are
 ctrl-C, DLE, and CR (line feeds are automatically appended to
 CR). With UNITREAD and UNITWRITE the automatic handling done by
 the Pascal system of these characters can be turned off. To turn
 off DLE expansion and EOF checking give bit 2 of the control word a

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 24 of 50

 value of 1. The automatic adding of line feeds to carriage returns
 can be suppressed by setting bit 3 of the control word to 1.

 A way was needed to suppress special handling for types 'A'&'B'. This
 can now be done in two ways. First, the control word of UNITR/W will
 turn off checking for type 'A' control chars if bit 4 is set and will
 turn off checking for type 'B' chars if bit 5 is set. In this mode,
 the special char handling will only be turned off during that
 particular unitio. This will be be done for you in the RSP by
 setting bits in a byte 'SPCHAR' at location BF1C. The CONCK routine
 will look at bit 0 of SPCHAR and if set will not look for the type
 'A' chars; if bit 1 is set, it will not look for the type 'B' chars.
 If you set these bits in the SPCHAR yourself instead of letting the
 RSP do it through the unitio control word, then the associated
 special character checking will be turned off until you reboot or
 reset the bits again. When special char checking is turned off, the
 chars are passed back to the Pascal level like all other chars would
 be. You can use these added features to redefine the system special
 chars in a particular application program or to just disable them.

 8. The EOF char (ctrl-C) causes a lot of problems in the Pascal system.
 The cause of the problems is that the editor looks for this character
 to end many of it's editing modes. The editor has it's own getchar
 routine which reads each character the user enters from SYSTERM:.
 When reading from SYSTERM: instead of the CONSOLE:, the EOF char is
 passed back as any other character but it still ends the current call
 to unitread. The editor echoes each char to the CONSOLE: itself until
 it comes to ctrl-C. The operating system and the filer both use the
 getchar routine in the operating system. This routine is defined to
 re-init the system if it gets a ctrl-C from the CONSOLE: and it reads
 from the CONSOLE:, not SYSTERM:. You must be sure not to end responses
 with control-C except for the cases (in the editor only) that are
 supposed to end with control-C. See the 1.1 Operating System
 Reference Manual.

 9. The bios card recognizing section has been enhanced to recognize a
 new 'FIRMWARE' type card. This card will allow OEM's to have their
 drivers in their own firmware on the card. Routines have been added
 to allow for init,read,write & status calls to this new type card.
 This protocol has been documented and is attached as an appendix
 to this document.

 10. As you can see, the Pascal system memory usage is scattered
 all over the 64k space. The Apple II was not designed with a
 stack machine, like the Pascal P-machine, in mind. We don't
 need any more constraints fixing certain pieces of the system
 to certain EXACT places. To make the best use of the space we
 have, we must have the ability to move things around. To
 achieve this goal, we intend the following:

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 25 of 50

 A. To stop people from writing things that peek here and poke there
 and expect things to stay exactly where they were for future
 versions.

 B. Various people need space for patch areas and other purposes.
 All programs have to be written so this space does not have to
 be in a permanent fixed location if this is at all possible.
 The areas reserved for system use are filling up fast, we need
 to avoid using them. You can get space dynamically using NEW
 but you must be careful that this space stays around for the
 whole time you need it. If you are attaching a driver, you
 can get buffer space in the driver by using .WORD or .BLOCK
 in the Assembler. This space can be accessed from outside the
 driver if you know the offset to the start of this space from
 the start of the driver. This method could even be used to get
 space below the heap by attaching a driver to one of the user
 defined devices that is a large .BLOCK and is only used as a
 buffer. You can get the address of this buffer (of a driver)
 from the jump vector that has a pointer to the driver. Pointers
 to all the jump vectors are in zero page, see the locations
 section below.

 C. The jump vector will have a fixed order for version 1.1 and
 future versions. The order is the same as in the old version
 1.0 with the new entrys added to the bottom. The setup for the
 jump vector and getting into the BIOS is different than the old
 1.0 system. Here is how the new system is set up with the
 fixed order for the jump vector:

;---
;
; MAIN BIOS JUMP TABLE CALLED FROM INTERPRETER
; (FOLLOWED BY REAL JUMP TABLE AT FIXED OFFSET)
; RSP CALLS COME TO THIS JUMP VECTOR
;
;---
BIOS JSR SAVERET ;CONSOLE READ ;Jump vector before fold.
 JSR SAVERET ;CONSOLE WRITE
 JSR SAVERET ;CONSOLE INIT
 JSR SAVERET ;PRINTER WRITE
 JSR SAVERET ;PRINTER INIT
 JSR SAVERET ;DISK WRITE
 JSR SAVERET ;DISK READ
 JSR SAVERET ;DISK INIT
 JSR SAVERET ;REMOTE READ
 JSR SAVERET ;REMOTE WRITE
 JSR SAVERET ;REMOTE INIT
 JSR SAVERET ;GRAFIC WRITE
 JSR SAVERET ;GRAFIC INIT
 JSR SAVERET ;PRINTER READ
 JSR SAVERET ;CONSOLE STAT
 JSR SAVERET ;PRINTER STAT
 JSR SAVERET ;DISK STAT

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 26 of 50

 JSR SAVERET ;REMOTE STAT
KCONCK JSR SAVERET ;To get to CONCK from CONCKVEC
 JSR SAVERET ;USER READ For UDRWIS
 ;USER WRITE
 ;USER INIT
 ;USER STAT
 JSR SAVERET ;For PSUBDR
 JSR SAVERET ;IDSEARCH
 .
 .
 .

;--------------------------------------
;
; THIS JUMP TABLE MUST BE OFFSET
; FROM BIOSTBL BY EXACTLY $5C.
; SYSTEM.ATTACH MODIFYS THIS JUMP
; VECTOR TO POINT TO ATTACHED DRIVERS
; FOR THE STANDARD SYSTEM UNITS.
;
;--------------------------------------

BIOSAF JMP CREAD ;Jump vector after fold.
 JMP CWRITE
 JMP CINIT
 JMP PWRITE
 JMP PINIT
 JMP DWRITE
 JMP DREAD
 JMP DINIT
 JMP RREAD
 JMP RWRITE
 JMP RINIT
 JMP IORTS ;Do nothing for GRAFWRITE.
 JMP GRAFINIT
 JMP IORTS ;Do nothing for PRINTER: read.
 JMP CSTAT
 JMP ZEROSTAT ;For PRINTER: stat, pop params & store 0
 ;in 1st buffer word.
 JMP DSTATT
 JMP ZEROSTAT ;For REMOTE: stat, pop params & store 0
 ;in 1st buffer word.
 JMP CONCK
 JMP UDRWIS ;Routine to get to user defined devices, see
 ;ATTACH part of document for description of
 ;this routine.
 JMP PSUBDR ;Routine to get to drivers that are substituted
 ;for the standard Pascal disk units 4,5,9..12.
 ;See ATTACH part of document for description of
 ;this routine.
 JMP IDS

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 27 of 50

;--
;
; STRIP LOCAL RETURN ADDR,
; STRIP PASCAL ADDR AND SAVE IN RETL,RETH
; PLACE 'GOBACK' ON RETURN STACK
; THEN RESTORE LOCAL RET ADDR & RETURN
; MEANWHILE UNFOLD BIOS INTO DXXX
;
;--
SAVERET STA TT1 ;SAVE A REG
 PLA
 CLC
 ADC #05A ;ADD OFFSET TO JUMP TABLE (BIOSAF)
 STA TT2 ;LOCAL RET ADDR
 PLA
 ADC #0
 STA TT3
 PLA
 STA RETL ;PRESERVE PASCAL RETURN
 PLA
 STA RETH
 .IF RUNTIME=0
 LDA 0C083 ;UNFOLD BIOS INTO DXXX
 .ENDC
 LDA TT1 ;RESTORE A-REG
 JSR SAVRET2 ;PUTS 'GOBACK' ON STACK

;--
;
; FOLD INTERP INTO DXXX
; THEN RETURN TO PASCAL VIA
; RETURN ADDR SAVED IN RETL,RETH
;
;--
GOBACK STA TT1 ;SAVE A-REG
 LDA RETH
 PHA
 LDA RETL
 PHA
 .IF RUNTIME=0
 LDA 0C08B ;FOLD INTERP INTO DXXX
 .ENDC
 LDA TT1
 RTS ;AND BACK TO PASCAL

SAVRET2 JMP @TT2 ;JUMP INTO JUMP TABLE (BIOSAF)

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 28 of 50

 D. In zero page are two words pointing to the base of the two
 jump vectors (before and after the fold). These are stored in
 PERMANENT locations that had a value of 0 in the old 1.0
 release and were not used by the system (see locations
 section). Applications needing to patch the jump vectors can
 store the offset from the vector base in the Y reg and use
 indirect indexed addressing to do the patch. The application
 will need to have the vector base locations for the old release
 hardcoded in as the base pointer for the old 1.0 release will
 be 0. If you want to write an application that works with 1.0
 and 1.1 and future versions, you know if the zero page vector
 pointers are 0 it's the 1.0 system otherwise it's 1.1 or a future
 version which will use the same protocols as 1.1 as described in
 this document.

 It is important that any application patching the jump vector
 temporarily then returning it to its original value get the
 original value from the vector itself before the patch and put
 it in a storage location. When the vector needs to be restored
 to it's original state, use this storage location for it's
 original value. The patches should be done in this manner so
 the applications doing the patches will always return the
 system to it's original state no matter what past, present or
 future Pascal version it is patching.

 E. For CONSOLE: init to be used from assembly routines the
 locations of SYSCOM and the BREAK routine have to be available.
 The CONINIT routine requires these on the stack. Pointers to
 SYSCOM and BREAK will be stored by the interpreter boot in a
 PERMANENT location in the BF00 page (see locations section).

 F. Since the old 1.0 release, the code to jump to the CONCK
 routine has been set up at location BF0A. Anyone wishing to
 get to the CONCK routine should do a JSR BF0A as this will
 always get them there no matter where the CONCK routine really
 is. The keypress function has been changed to conform to this
 new convention but it will use the old convention if it is
 working from within an old system. Do not try to get to CONCK
 in this way from within an ATTACHED driver as you will loose
 your return address to Pascal. See ATTACH part of this
 document for how to get to CONCK from an attached driver.

 G. There is now a version byte so one can tell which version (1.0,
 1.1, etc.) of Apple Pascal he is working with. There is also a
 flavor byte to tell one which flavor of this version he has
 (regular, runtime, runtime without sets, etc.). (see locations
 section)

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 29 of 50

 11. Whenever SYSTEM.ATTACH is used, it will make a copy of the
 original BIOS jump vector (the after fold vector that has the
 actual driver addresses in it) and put this below the heap with
 the drivers that are attached. It will leave a pointer to this
 copy of the vector at location 00E2. You can use this vector in
 you drivers to get to the standard Apple drivers for any device.
 This way you can define a driver that does something above and
 beyond the standard Apple driver yet this new driver can still
 make use of the standard Apple driver. See the ATTACH part of
 this document for more information.

 12. In the RSP are two vectors that tell the RSP what is legal
 (input &-or output) for a particular character orientated device
 (CONSOLE:, REMOTE: & PRINTER:). For example it tells the RSP that
 it is illegal to read from the PRINTER:. If you wanted to ATTACH
 a PRINTER: driver so you could read from the PRINTER:, you would
 have to change this vector. 00E4 points to the READTBL vector
 and 00E6 to the WRITTBL vector. Let's take the READTBL for an
 example:

 READTBL ;table of routine addresses to be called when
 ;writing to that unit (disk I/O does not use
 ;this table).
 ;an entry=0 means that the operation is illegal
 ;for that unit.
 .WORD BIOS+CONREAD ;unit 1
 .WORD BIOS+CONREAD ;unit 2
 .WORD 0 ;unit 3
 .WORD 0 ;4 & 5 are disk units
 .WORD 0
 .WORD 0 ;6 is PRINTER:
 .WORD BIOS+REMREAD ;unit 7
 .WORD 0 ;8 is rem write which has
 ;an address in the WRITTBL

 Here BIOS refers to the base of the jump vector before the fold and
 CONREAD is the offset off the base of that vector to get to the
 jump to the CONSOLE: read routine (for CONSOLE: read the offset is
 0, for CONSOLE: write it's 3, etc). The value for BIOS is the
 pointer stored in location 00EC mentioned in the locations
 section below.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 30 of 50

 LOCATIONS.

 These are the locations of new system permanents mentioned in
 this document, all pointers are set up by the system and are
 stored low byte first. Do not modify what is stored in these
 pointers (except for SPCHAR if you want to suppress special
 character checking) since the system uses this information too.
 These locations are defined to have the same function & remain
 in the same place for future versions of Apple II Pascal.

 BF1C SPCHAR (To control special chars)

 BF1D IBREAK (Set by boot in interp for assembly calls to CONINIT)
 BF1F ISYSCOM ('')

 BF21 VERSION (1 byte Version # of system, =2 for the new release, 0
 for the old 1.0 release)
 BF22 FLAVOR (This byte tells which flavor [runtime,regular,
 etc.] of this VERSION you are dealing with)
 The encoding is: (LC=16KB RAM Language Card)
 1 -->regular system
 runtime versions:
 2 -->LC-ALL (LC- means no
 language card)
 3 -->LC-no sets
 4 -->LC-no floating point
 5 -->LC-no sets or floating point
 6 -->LC+ALL
 7 -->LC+no sets
 8 -->LC+no floating point
 9 -->LC+no sets or floating point
 This flavor byte is 0 in the old 1.0 release.

 BFC0-BFFF BDEVBUF (Area for non Apple boot devices, like the CORVUS)
 00E2 ACJVAFLD (Pointer to ATTACH copy of the original Jump Vector
 after the fold)
 00E4 RTPTR (Pointer to READTBL)
 00E6 WTPTR (Pointer to WRITTBL)
 00E8 UDJVP (Pointer to user device jump vector)
 00EA DISKNUMP (Pointer to disknum vector)
 00EC JVBFOLD (Pointer to jump vector before fold)
 00EE JVAFOLD (Pointer to jump vector after fold)

 FFF6 (Version word which = 1 for version 1.0 and
 = 0 for version 1.1
 This version word should not be used at runtime
 to tell which version you have. For that use the
 version byte mentioned above. This word should only
 be used by software that wants to see which
 SYSTEM.APPLE it is dealing with by looking at the
 contents of this word in the SYSTEM.APPLE file
 when it is not loaded in memory)

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 31 of 50

 FFF8 (Start vector)
 FFFA (NMI non maskable interrupt vector)
 FFFC (RESET vector)
 FFFE (IRQ interrupt request vector)

 The locations and code in the 1.0 'PRELIMINARY APPLE PASCAL GUIDE TO
 INTERFACING FOREIGN HARDWARE' BIOS document are not the same for
 Apple Pascal 1.1 and that document clearly stated we would not
 commit ourselves to keeping them the same.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 32 of 50

 Pascal 1.1 Firmware Card Protocol
 ------ --- -------- ---- --------

One major problem with Apple Pascal 1.0 is the way it deals with
peripheral cards. It was set up to work with the four peripheral cards that
Apple supported at the time of its release (the disk,communciations,serial
and parallel cards) and had no mechanism for interfacing any other devices.
Since Apple as well as many other vendors continue to produce new peripherals
for the Apple][, a new protocol was designed and implemented in the Pascal
1.1 BIOS which allows new peripheral cards to be introduced to the system in
a consistent and transparent fashion. The new protocol is called the
"firmware card" protocol since the BIOS deals with these cards by making
calls to their firmware at entry points defined by a branch table on the card
itself. The new protocol fully supports the Pascal typeahead function and
KEYPRESS will work with firmware cards used as CONSOLE devices. The
following paragraphs describe the firmware card protocol in full detail.

A firmware card may be uniquely identified by a four byte sequence in
the card's $CN00 ROM space. Location $CN05 must contain the value $38 and
location $CN07 must contain $18. Note that these are identical to the Apple
Serial Card. A firmware card is distinguished from a serial card by the
further requirement that location $CN0B must contain the value $01. This
value is called the "generic signature" since it is common to all firmware
cards. The value at the next sequential location, $CN0C, is called the
"device signature" since it uniquely identifies the device.

The device signature byte is encoded in a meaningful way. The high
order 4 bits specify the class of the device while the low order four bits
contain a unique number to distinguish between specific devices of the same
class. The appendix to this document defines some device class numbers; in
any case vendors should contact Apple Technical Support to make sure they use
a unique number for their device signature. Although the device signature is
ignored by the 1.1 BIOS, it may be used by applications programs to identify
specific devices.

Following the 2 signature bytes is a list of four entry point offsets
starting at address $CN0D. These four entry points must be supported by all
firmware cards. They are the initialization, read, write and status calls.
The BIOS takes care of disabling the $C800 ROM space of all other cards
before calling the firmware routines.

The offset to the initialization routine is at location $CN0D. Thus, if
$CN0D contains XX, the BIOS will call $CNXX to initialize the card. On
entry, the X register contains $CN (where N is the slot number) and the Y
register contains $N0. On exit, the X register should contain an error code,
which should be 0 if there was no error. This error code is passed on to the
higher levels of the system in the global variable "IORESULT". Registers do
not have to be preserved.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 33 of 50

The offset to the read routine is at location $CN0E. On entry, the X
register will contain $CN and the Y register will contain $N0. On exit, the
A register should contain the character that was read while the X register
contains the IORESULT error code. The A and Y registers do not have to be
preserved.

The offset to the write routine is at location $CN0F. On entry, the A
register contains the character to be written while the X register contains
$CN and the Y register contains $N0. On exit the X register should contain
the IORESULT error code (which should be 0 for no error). The A and Y
registers do not have to be preserved.

The offset to the status routine is at location $CN10. On entry, the X
register contains $CN and the Y register contains $N0 while the A register
contains a request code. If the A register contains 0, the request is "are
you ready to accept output?". If the A register contains 1, the request is
"do you have input ready for me?". On exit, the driver returns the IORESULT
error code in the X register and the results of the status request in the
carry bit. The carry clear means "false" (i.e., no, I don't have any input
for you), while the carry set means true. Note that the status call must
preserve the Y register but does not have to preserve the A register.

Thus, sample code for the first few bytes of a firmware card's $CN00
space should look something like:

 BASICINIT BIT $FF58 ;set the v-flag
 BVS BASICENTRY ;always taken
 IENTRY SEC ;BASIC input entry point
 DFB $90 ;opcode for BCC
 OENTRY CLC ;BASIC output entry point
 CLV
 BVC BASICENTRY ;Always taken
 ;
 ; Here is the Pascal 1.1 Firmware Card Protocol Table
 ;
 DFB $01 ;Generic signature byte
 DFB $41 ;Device signature bye
 ;
 PASCALINIT DFB >PINIT ; > means low order byte
 PASCALREAD DFB >PREAD ;offset to read
 PASCALWRITE DFB >PWRITE ;offset to write
 PASCALSTATUS DFB >PSTATUS ;offset to status routine

The above code fulfils all the requirements for both the BASIC and
Pascal 1.1 I/O protocols. The routines PINIT, PREAD, etc, are probably jumps
into the card's $C800 space which is already properly enabled by the BIOS.
The reason the $CN00 space was chosen for the protocol (as opposed to the
$C800 space) is that the BASIC protocol requires that all cards have $CN00
ROM space while some smaller cards may not need any $C800 ROM space.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 34 of 50

The firware card protocol includes 2 optional calls that do not have to
be implemented but would be kind of nice. The BIOS checks location $CN11 to
determine if the optional calls are present; if that location contains a $00
then the BIOS thinks the calls are implemented. Thus if your card does not
implement the optional calls, you should ensure that $CN11 contains a
non-zero value. The two optional calls are a control call pointed to by
$CN12 and an interrupt handler call pointed to by $CN13.

The control call entry point is specified by the offset at $CN12. On
entry, the X register contains $CN, the Y register contains $N0 and the A
register contains the control request code. Control requests are defined by
the device. On exit the X register should contain the IORESULT error code.

The interrupt poll entry point is specified by the offset at $CN13. On
entry, the X register contains $CN and the Y register contains $N0. The
interrupt poll routine should poll the card's hardware to determine if it has
a pending interrupt; if it does not it should return with the carry clear.
If it does, it should handle the interrupt (including disabling it) and
return with the carry set. Also, the X register should contain the IORESULT
error code which should be 0 if there was no error. An interrupt polling
routine must be careful not to clobber any zero page or screen space
temporaries.

The control and interrupt requests are not implemented in the Pascal 1.1
BIOS but it would be nice to support them if possible as they may be
implemented in later versions of the Pascal BIOS as well as other forthcoming
operating system environments for the Apple][.

Note that the firmware card signature is a superset of the Apple serial
card signature as recognized by the Pascal 1.0 BIOS. This allows a firmware
card to function with both Pascal 1.0 and Pascal 1.1. If a card wishes to
work with Pascal 1.0 as a "fake" seral card, it must provide an input entry
point at $C84D and an output entry point at $C9AA. Note that since Pascal
1.0 will think the card is a serial card, typeahead and KEYPRESS capabilities
will be lost.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 35 of 50

 Additional Notes
 ---------- -----

1. The Pascal RSP expects the high order bit of every ASCII character
 it receives from the Console read routine to be clear. The RSP will not do
 this for you; you must ensure the high bit of all text your card passes to
 the RSP from the console read routine is clear.

2. Zero page locations $00 to $35 may be used as temporaries by your
 firmware, as are the slot 0 screen space locations ($478,$4F8, etc.).
 In general, peripheral card firmware should be as conservative as
 possible in their memory usage, preserving zero page contents whenever
 possible. An interrupt polling routine must not destroy these or any
 other memory locations.

3. Location $7F8 must be set up to contain the value $CN, where N is the
 slot number, if your card utilizes the $C800 expansion ROM space. The BIOS
 does not do this for you; his must be done if you want your card to
 function in an interrupting environment.

4. The firmware card status routine should be as quick as possible, as it
 may be called from within the I/O polling loops of many other peripherals
 if your card is being used as the console device. In no case should the
 status routine take longer than 100 milliseconds.

5. A firmware card in slot 1 is automatically recognized as the volume
 "PRINTER:". A firmware card in slot 2 is automatically recognized as
 the volumes "REMIN:" and "REMOUT:". A firmware card in slot 3
 is automactically recognized as the volumes "CONSOLE:" and "SYSTERM:".

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 36 of 50

 APPENDIX

The following numbers correspond to device classes used in the device
signature code. Make sure you contact Apple Technical Support to
ensure that you have a unique device signature code.

 0 -- reserved
 1 -- printer
 2 -- joystick or other X-Y input device
 3 -- I/O serial or parallel card
 4 -- modem
 5 -- sound or speech device
 6 -- clock
 7 -- mass storage device
 8 -- 80 column card
 9 -- Network or bus interface
 10 -- Special purpose (none of the above)

 11 through 15 are reserved for future expansion

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 37 of 50

 Additional Information
 ---------- -----------

 1. The type ahead buffer is located at $03B1 hex and is $4E hex in length.
 It is implemented with a read pointer (RPTR at BF18 hex) and a write
 pointer (WPTR at $BF19 hex). At CONSOLE: init time, these should both
 be set to 0. When a character is detected by CONCK, the WPTR is
 incremented then compared with $4E. If it is equal to $4E, it is set
 to $0 (this is a circular buffer). Then the WPTR is compared with RPTR
 and if they are equal the buffer is full. If the buffer is not full,
 the character is stored at $03B1+the value in WPTR.

 When removing a character from the type ahead buffer, use the following
 sequence. Compare the RPTR with WPTR and if they are equal, the buffer
 is empty and you must wait until a character is available from the
 keyboard. If they are not equal, increment the RPTR and compair it
 to $4E. If it equals $4E, set it to $0. Now get the character from
 location $03B1+the value in RPTR.

 If you are implementing your own type ahead, you can do it however
 you wish. This information is made available in case you want to check
 for input from another device as well as the standard system CONSOLE:
 and have characters from that device be put in the system type ahead
 buffer.

 2. The example drivers in this document did not show the setting of the
 IORESULT in the X register. This would be done in the code specific
 to your driver and should allways be set to something (0 if there are
 no errors). If there are errors, set it as described elsewhere in this
 document and the Pascal Manuals.

 3. For further information, see the newest edition of the Apple II Reference
 Manual.

 4. These listings from the BIOS are included to show you how we implemented
 certain system drivers. You cannot rely on the locations of these
 to stay in the same place in the BIOS in future releases of Apple II
 Pascal nor can you rely on the routines themselves staying the same.
 They are only included as examples and to give you information that
 may not be documented elsewhere. This is not a complete BIOS listing so
 you may find references to routines or locations that are not included in
 this listing. The only locations that will be sure to remain the same
 for future releases are those mentioned in the LOCATIONS section above.
 We are against you poking the BIOS yourself to change or overwrite any
 of these routines. We did not include this information so you could poke
 the BIOS. If you do modify the BIOS, it is completely at your own risk!
 We have provided the ATTACH utility so you can add your own drivers
 the system without poking the BIOS and this is the way it should be done!
 If you have special requirements that are not solved by ATTACH, please
 contact Apple Technical Support.

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 38 of 50

;---------------------------------------
;
; ZERO PAGE PERMANENTS
;
;---------------------------------------
FIRST .EQU 0F0 ;START ZERO PAGE USE
BAS1L .EQU FIRST ;SCREEN 1 PTR
BAS1H .EQU FIRST+1
BAS2L .EQU FIRST+2 ;SCREEN 2 PTR
BAS2H .EQU FIRST+3
CH .EQU FIRST+4 ;HORIZ CURSOR, 0..79
CV .EQU FIRST+5 ;VERT CURSOR, 0..23
TEMP1 .EQU FIRST+6
TEMP2 .EQU FIRST+7
SYSCOM .EQU FIRST+8 ;2 BYTES PTR TO SYSCOM AREA

;---------------------------------------
;
; BF00 PAGE PERMANENTS
;
;---------------------------------------
CONCKVECTOR .EQU 0BF0A ;4 BYTES
SCRMODE .EQU 0BF0E
LFFLAG .EQU 0BF0F
NLEFT .EQU 0BF11
ESCNT .EQU 0BF12
RANDL .EQU 0BF13
RANDH .EQU 0BF14
CONFLGS .EQU 0BF15
BREAK .EQU 0BF16 ;2 BYTES
RPTR .EQU 0BF18 ;1 BYTE
WPTR .EQU 0BF19 ;1 BYTE
RETL .EQU 0BF1A
RETH .EQU 0BF1B
SPCHAR .EQU 0BF1C ;00 MEANS DO ALL SPECIAL CHARACTER CHECKING
 ;01 MEANS DON'T CHECK FOR APPLE SCREEN STUFF
 ;02 MEANS DON'T CHECK FOR OTHER SCREEN STUFF
IBREAK .EQU 0BF1D ;INTERP STORES BREAK & SYSCOM ADR HERE FOR
ISYSCOM .EQU 0BF1F ;USER ROUTINES TO GET AT
VERSION .EQU 0BF21 ;VERSION OF SYSTEM SET TO 2 FOR APPLE 1.1
FLAVOR .EQU 0BF22 ;SEE TABLE IN INTERP BOOT
SLTTYPS .EQU 0BF27 ;BF27..0BF2E
XITLOC .EQU 0BF2F ;INTERP INITS THIS TO LOCATION OF XIT
 ;FORTRAN PROTECTION USES BF56..BF7F
 ;VENDOR BOOT DEVICES CAN USE BFC0..BFFF

;---------------------------------------
;
; MISCELANEOUS PROGRAM EQUATES
;
;---------------------------------------
BUFFER .EQU 0200 ;TEMP HSHIFT BUFFER (OVERLAPS DISK BUF)
CONBUF .EQU 03B1 ;78 CHAR TYPE-AHEAD BUF

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 39 of 50

CBUFLEN .EQU 04E ;78 DECIMAL
NCTRLS .EQU 14. ;# CTRL CHARS IN TABLE
SIGVALUE .EQU 1
BYTEPSEC .EQU 256. ;DISK INFO FOR DISKSTAT
SECPTRAK .EQU 16.
TRAKPDSK .EQU 35.
UDJVP .EQU 0E8 ;0 PAGE JUMP VECTOR POINTER LOCATIONS
DISKNUMP .EQU 0EA
JVBFOLD .EQU 0EC
JVAFOLD .EQU 0EE
HCMODE .EQU 0E1 ;THESE TWO BYTES USED FOR HIRES STUFF
HSMODE .EQU 0E0

JVECTRS .WORD UDJMPVEC
 .WORD DISKNUM
 .WORD BIOS
 .WORD BIOSAF

;---------------------------------------
;
; HARD RESET INITIALIZATION
;
;---------------------------------------
START CLD ;SET HEX MODE
 SEI ;MAKE SURE INTERRUPTS ARE OFF.

;---------------------------------------
;
; CLEAR ALL MEMORY 0 TO BFFF
; (RUN-TIME SYSTEM:0 TO TOPMEM + BF PAGE);
;
;---------------------------------------
 LDA #0
 STA ZEROL
 STA ZEROH
 TAY
 TAX
ZERLP STA (ZEROL),Y ;WRITE A BYTE OF 0
 INY ;BUMP POINTER
 BNE ZERLP ;LOOP TILL NEXT PAGE
 INC ZEROH ;BUMP MSB POINTER
 INX
 .IF RUNTIME=1
 CPX #TOPMEM ;DONE CLEARING MEM?
 BNE $1
 LDX #0BF ;CLEAR BF PAGE
 STX ZEROH
$1: CPX #0C0
 BNE ZERLP
 .ELSE
 CPX #0C0 ;DONE CLEARING BFXX?
 BNE ZERLP
 .ENDC

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 40 of 50

;-----------------------
;
; CHECKSUM PROMS ON EACH SLOT
; TO FIND OUT WHO'S OUT THERE
;
; SUM TWICE TO TELL IF CARD THERE
; IF SUMS DONT MATCH THEN NO PROM IS THERE
; IF MS BYTE OF SUM=0 THEN NO PROM IS PRESENT
;
;-----------------------
 LDY #0C7 ;POINT TO SLOT 7 PROM
NXTCRD STY CKPTRH ;(CKPTRL=0 FROM MEM CLEAR)
 JSR CKPAGE ;16 BIT SUM IN X,A
 STA CHECKL
 STX CHECKH ;SAVE FOR MATCH
 JSR CKPAGE ;SUM AGAIN
 CPX #0 ;WAS MSB ZERO?
 BEQ NOPROM ;YES NO PROM ON CARD
 CMP CHECKL ;LSB MATCH?
 BNE NOPROM ;NO, NO PROM ON CARD
 CPX CHECKH
 BNE NOPROM ;MSB DIDNT MATCH
 BEQ SKIPIORTS ;ALWAYS TAKEN

;----------------------------
;
; TABLE OF CN05 AND CN07 BYTES OF EACH CARD
;
;----------------------------
CN05BYTS .BYTE 003,018,038,048
CN07BYTS .BYTE 03C,038,018,048

;----------------------------
;
; NOW THAT WE KNOW A CARD IS THERE,
; EXAMINE CN05 AND CN07 BYTE TO
; DETERMINE WHICH CARD IT IS
;
; SET CARDTYPE AS FOLLOWS:
; 0=CKSUM NOT REPEATABLE OR MSB=0
; 1=CKSUM REPEATABLE,CARD NOT RECOGNIZED
; 2=DISK CARD (BYTE 07= 03C)
; 3=COM CARD (BYTE 07= 038)
; 4=SERIAL (BYTE 07= 018)
; 5=PRINTER (BYTE 07= 048)
; 6=FIRMWARE (BYTE 07= 048)
;-----------------------------
SKIPIORTS LDX #5 ;4 TYPES OF CARDS
NXTYP LDY #5 ;CHECK BYTE CN05 OF CARD
 LDA (CKPTRL),Y
 CMP CN05BYTS-2,X ;MATCH TABLE?
 BNE TRYNXT ;NO, TRY NEXT IN LIST
 LDY #7
 LDA (CKPTRL),Y ;TEST CN07 BYTE

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 41 of 50

 CMP CN07BYTS-2,X ;MATCH TABLE?
 BEQ STOR ;BOTH MATCHED, CARD RECOGNIZED
TRYNXT DEX ;BUMP TO NEXT IN LIST
 CPX #2 ;TRY ALL TYPES IN LIST
 BCS NXTYP ;IF NOT IN LIST,FALL THRU WITH X=1
STOR CPX #4 ;IS IT A SERIAL CARD?
 BNE STOR1
 LDY #0B
 LDA (CKPTRL),Y
 CMP #SIGVALUE
 BNE STOR1
 LDX #6
STOR1 LDY CKPTRH
 TXA
 STA SLTTYPS-0C0,Y
NOPROM LDY CKPTRH
 DEY ;BUMP TO NEXT LOWER SLOT
 CPY #0C0 ;SLOTS 7 DOWNTO 1 DONE?
 BNE NXTCRD ;LOOP TILL 7 SLOTS DONE
 ;LEAVE WITH Areg:=0
;---------------------------------------
;
; SET UP CONCK VECTOR FOR KEYPRESS FUNCTION
;
;---------------------------------------
 BEQ $2 ;ALWAYS BRANCHES
$1 JSR KCONCK ;HERE ARE THE 2 INSTRUCTIONS TO BE TRANSFERRED
 RTS
$2 LDY #3 ;TRANSFER 4 BYTES TO BF0A
$21 LDA $1,Y
 STA CONCKVECTOR,Y
 DEY
 BPL $21

 ;SET UP JUMP VECTOR POINTERS IN 0 PAGE
 LDY #7
$3 LDA JVECTRS,Y
 STA UDJVP,Y
 DEY
 BPL $3

;---------------------------------------
;
; SET SCREEN MODE ETC
;
;---------------------------------------
 LDA #80
 STA HCMODE
 LDA 0C051 ;SET TEXT MODE
 LDA 0C052 ;SET BOTTOM 4 GRAFIX
 LDA 0C054 ;SELECT PRIMARY PAGE
 LDA 0C057 ;SELECT HIRES GRAFIX
 LDA 0C010 ;CLEAR KEYBOARD STROBE
 JSR FORM ;ERASE SCREEN

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 42 of 50

 JSR INVERT ;PUT CURSOR ON SCREEN
 JSR DRESET ;DO ONCE ONLY DISK INIT
 LDA SLTTYPS+3 ;WHAT CARD IN SLOT 3?
 LDY #030 ;SLOT 3
 JSR GENIT ;SET BAUD IF COM OR SER THERE
 CPX #0 ;WAS AN EXTERNAL CONSOLE THERE?
 BNE STARTUP ;NO,USE APPLE SCREEN
 LDA #4
 STA SCRMODE ;SET BIT 2 FOR EXT CON
STARTUP JMP JPASCAL ;FOLD IN INTERP AND START PASCAL

;-------------------------
;
; SUB TO CHECKSUM ONE PAGE
;
CKPAGE LDA #0
 TAX ;CLEAR SUM
 TAY ;CLEAR INDEX
CKNX CLC
 ADC (CKPTRL),Y ;ADD BYTE
 BCC NOCRY
 INX ;INC HI BYTE IF CARRY
NOCRY INY ;BUMP INDEX
 BNE CKNX ;SUM 256 BYTES
 RTS ;RETURN SUM IN X,A AND Y=0

;---
;
; BIOS HANDLERS FOR LOGICAL AND PHYSICAL DEVICES.
;
;---

;---------------------------------------
;
; CONSOLE CHECK FOR CHAR AVAIL
; STATUS AND ALL REGS PRESERVED
; IF CHAR AVAIL,PUT IN CONBUF AND INC WPTR.
;
; WARNING...THIS ROUTINE ALSO CALLED FROM DISK ROUTINES
;
;---------------------------------------
CONCK PHP
 PHA
 TXA
 PHA
 TYA
 PHA
RNDINC INC RANDL ;BUMP 16 BIT RANDOM SEED
 BNE RNDOK
 INC RANDH
RNDOK LDA SLTTYPS+3 ;WHAT CARD IS IN SLOT 3?
 CMP #3 ;IS IT A COM CARD?
 BEQ COMCK ;YES,GO CHECK IT
 CMP #4 ;IS IT A SERIAL CARD?

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 43 of 50

 BEQ JDONCK ;YES,IT CANT BE TESTED
 CMP #6
 BEQ FIRMCK
TSTKBD LDA 0C000 ;TEST APPLE KEYBOARD
 BPL JDONCK ;NO CHAR AVAIL
 STA 0C010 ;CLEAR KEYBD STROBE
 AND #07F ;MASK OFF TOP BIT
 TAX ;See if checking for apple special chars is
 LDA SPCHAR ;turned off.
 ROR A
 BCS NOTFOLP2 ;Jump if so
 TXA
 CMP #11. ;CTRL-K?
 BNE NOTK
 LDA #05B ;YES,REPLACE WITH LEFT SQR BRACKETT
NOTK CMP #1 ;CTRL-A?
 BNE NTTAB
 JSR HTAB ;YES,TAB NEXT MULT 40
 LDA CONFLGS
 AND #0FE
 STA CONFLGS ;CLEAR AUTO-FOLLOW BIT
 JMP DONECK
NTTAB CMP #26. ;CTRL-Z?
 BNE NOTFOL ;NO,PUT CHAR IN BUFFER
 LDA CONFLGS
 ORA #1
 STA CONFLGS ;SET AUTO-FOLLOW BIT
 BNE DONECK ;BR ALWAYS

COMCK LDA 0C0BE ;CHAR AVAIL?
 LSR A
 BCC DONECK ;NO CHAR AVAIL
 LDA 0C0BF ;GET CHAR FROM UART
GOTCHAR AND #07F ;MASK OFF BIT 7
NOTFOL TAX
 LDA SPCHAR ;See if console special char checking is
 ;turned off.
 ROR A
NOTFOLP2 ROR A
 BCS NFMI1 ;Jump if so
 TXA
 LDY #055
 CMP (SYSCOM),Y ;STOP CHAR?
 BNE NOTSTOP
 LDA CONFLGS
 EOR #080
 STA CONFLGS ;YES,TOGGLE STOP BIT (BIT 7)
JDONCK JMP DONECK

FIRMCK LDA #1
 LDY #030
 JSR FIRMSTATUS
 BCC DONECK
 JSR FREAD1

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 44 of 50

 JMP GOTCHAR

NOTSTOP DEY
 CMP (SYSCOM),Y
 BNE NOTBRK
 LDA CONFLGS
 AND #03F
 STA CONFLGS ;CLEAR FLUSH&STOP BITS
 .IF RUNTIME=0
 JMP TOBREAK
 .ELSE
 JMP @BREAK ;BREAK OUT
 .ENDC
NOTBRK DEY
 CMP (SYSCOM),Y ;FLUSH?
 BNE NOTFLUS
 LDA CONFLGS
 EOR #040
 STA CONFLGS ;TOGGLE FLUSH BIT (BIT 6)
 JMP DONECK

NFMI1 TXA
NOTFLUS LDX WPTR
 JSR BUMP
 CPX RPTR ;BUFFER FULL?
 BNE BUFOK
 JSR BELL
 JMP DONECK ;BEEP&IGNORE CHAR
BUFOK STX WPTR
 STA CONBUF,X ;PUT CHAR IN BUFFER
DONECK BIT CONFLGS ;IS STOP FLAG SET?
 BPL CKEXIT
 JMP RNDINC ;LOOP IF IN STOP MODE

CKEXIT PLA
 TAY
 PLA
 TAX
 PLA
 PLP
 RTS ;ELSE RESTORE STAT AND ALL REG AND RETURN
BUMP INX ;BUMP BUFFER POINTER WITH WRAP-AROUND
 CPX #CBUFLEN
 BNE BMPRTS
 LDX #0
BMPRTS RTS

;----------------------------------
;
; INITIALIZE CONSOLE:
;
;----------------------------------
CINIT PLA
 STA TEMP1 ;SAVE RETURN ADDR

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 45 of 50

 PLA
 STA TEMP2
 PLA
 STA SYSCOM ;SAVE PTR TO SYSCOM AREA
 PLA
 STA SYSCOM+1
 PLA
 STA BREAK ;SAVE BREAK ADDRESS
 PLA
 STA BREAK+1
 LDA TEMP2
 PHA ;RESTORE RETURN ADDR
 LDA TEMP1
 PHA
 LDA RPTR ;FLUSH TYPE-AHEAD BUFFER
 STA WPTR
 LDA CONFLGS
 AND #03E
 STA CONFLGS ;CLEAR STOP,FLUSH,AUTO-FOLLOW BITS
 JSR TAB3 ;NO,HORIZ SHIFT FULL LEFT
CINIT2 LDX #0 ;CLEAR IORESULT
 RTS ;AND RETURN

;----------------------------------
;
; READ FROM CONSOLE:
; KEYBOARD,COM OR SERIAL CARD IN SLOT 3
;
;----------------------------------
CREAD JSR ADJUST ;HORIZ SCROLL IF NECESSARY
 LDY #030 ;SLOT 3
 LDA SLTTYPS+3 ;WHAT TYPE OF CARD?
 CMP #4 ;IS IT A SERIAL CARD?
 BNE CREAD2 ;NO,CONTINUE
 JSR RSER ;YES, READ IT
 AND #7F ;MASK OFF TOP BIT
 RTS
CREAD2 JSR CONCK ;TEST CHAR
 LDX RPTR
 CPX WPTR
 BEQ CREAD ;LOOP TILL SOMETHING IN BUFFER
 JSR BUMP
 STX RPTR ;BUMP READ POINTER
 LDA CONBUF,X ;GET CHAR FROM BUFFER
 LDX #0 ;CLEAR IORESULT
 RTS ;AND RETURN TO PASCAL

;----------------------------------
;
; INITIALIZE PRINTER:
; PRINTER IS ALWAYS IN SLOT 1
; IT MAY BE A PRINTER,COM,OR SERIAL CARD
;
;----------------------------------

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 46 of 50

PINIT LDY #010 ;SLOT 1 ; 010
 LDA SLTTYPS+1 ;WHAT CARD IN SLOT 1?
 CMP #5 ;PRINTER CARD?
 BEQ CLRIO1 ;YES,NO INIT NEEDED
GENIT CMP #4 ;SERIAL CARD?
 BEQ ISER ;YES, INIT SER CARD
 CMP #3 ;COM CARD?
 BEQ ICOM ;YES,INIT COM CARD
 CMP #6
 BEQ FIRMINIT
 LDX #9 ;NONE OF ABOVE,OFFLINE
 RTS

FIRMINIT PHA
 JSR SER1
 LDY #0D
FVEC1 LDA (TEMP1),Y
 STA TEMP1
 LDY 6F8
 PLA
 JMP @TEMP1

;----------------------------------
;
; INITIALIZE REMOTE:
; REMOTE IS ALWAYS IN SLOT 2
; IT MAY BE A COM OR SERIAL CARD
;
;----------------------------------
RINIT LDA SLTTYPS+2 ;WHAT CARD IN SLOT 2?
 LDY #020
 BNE GENIT ;BR ALWAYS TAKEN

;----------------------------------
;
; INIT COM CARD, Y=0N0
;
;----------------------------------
ICOM LDA #3 ;MASTER INIT
 STA 0C08E,Y ;TO STATUS
 LDA #21.
 STA 0C08E,Y ;SET BAUD ETC
CLRIO1 LDX #0 ;CLEAR IORESULT
 RTS ;AND RETURN

;----------------------------------
;
; INIT SERIAL CARD, Y=0N0
;
;----------------------------------
ISER JSR SER1 ;ASSORTED GARBAGE
 JSR 0C800 ;SET UP SLOT DEPENDENTS
CLRIO3 LDX #0 ;CLEAR IORESULT
 RTS ;AND RETURN

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 47 of 50

;----------------------------------
;
; ASSORTED SERIAL CARD SET-UP
;
;----------------------------------
SER1 STY 06F8 ;STORE N0
 TYA
 LSR A
 LSR A
 LSR A
 LSR A
 ORA #0C0
 TAX ;MAKE 0CN IN X
 LDA #0
 STA TEMP1
 STX TEMP2 ;SET UP INDIRECT ADDRESS
 LDA 0CFFF ;TURN OFF ALL C8 ROMS
 LDA (TEMP1),Y ;SELECT C8 BANK
 RTS

;----------------------------------
;
; WRITE TO CONSOLE:
; VIDEO SCREEN,COM OR SER CARD IN SLOT 3
;
;----------------------------------
CWRITE JSR CONCK ;CONSOLE CHAR AVAIL?
 BIT CONFLGS ;IS FLUSH FLAG SET?
 BVS CLRIO ;YES,DISCARD CHAR & RETURN
 TAX ;SAVE CHAR IN X
 LDY #030 ;SLOT 3;010
 LDA SLTTYPS+3 ;WHAT KIND OF CARD?
 CMP #3 ;COM CARD?
 BEQ WCOM ;YES WRITE TO COM CARD SLOT 3
 CMP #4 ;SERIAL CARD?
 BEQ WSER ;YES,WRITE TO SER CARD SLOT 3
 CMP #6
 BEQ WFIRM
 TXA ;ELSE RESTORE CHAR & SEND TO SCREEN
VIDOUT STA TEMP1 ;SAVE CHAR FOR LATER
 JSR INVERT ;REMOVE CURSOR
 LDY CH
 JSR VOUT2 ;DO THE BUSINESS
 JSR INVERT ;RESTORE THE CURSOR
CLRIO LDX #0 ;CLR IORESULT
 RTS ;RETURN FROM VIDOUT

WFIRM TXA
 PHA
 LDA #0
 JSR IOWAIT
 JSR SER1
 LDY #0F

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 48 of 50

 JMP FVEC1

;----------------------------------
;
; WRITE TO SERIAL CARD, Y=0N0,CHAR IN X
;
;----------------------------------
WSER JSR CONCK ;CONSOLE CHAR?
 TXA
 PHA ;SAVE CHAR ON STACK
 JSR SER1 ;ASSORTED GARBAGE
 PLA
 STA 05B8,X ;SET UP DATA BYTE
 JSR 0C9AA ;SEND IT (SHOUT)
 LDX #0
 RTS

;----------------------------------
;
; WRITE TO REMOTE:, CHAR IN A
;
;----------------------------------
RWRITE TAX ;SAVE CHAR
 LDA SLTTYPS+2 ;WHAT CARD IN SLOT 2?
 LDY #020
 BNE GENW2 ;BR ALWAYS TAKEN

;----------------------------------
;
; WRITE TO PRINTER CARD SLOT1, CHAR IN X
;
;----------------------------------
WPRN JSR CONCK ;CONSOLE CHAR AVAIL?
 LDA 0C1C1 ;TEST PRINTER READY
 BMI WPRN ;LOOP TILL READY
 STX 0C090 ;SEND CHAR
CLRIO2 LDX #0
 RTS

;----------------------------------
;
; WRITE TO COM CARD, Y=0N0,CHAR IN X
;
;----------------------------------
WCOM JSR CONCK ;CONSOLE CHAR?
 LDA 0C08E,Y ;TEST UART STATUS
 AND #2 ;READY?
 BEQ WCOM ;NO,WAIT TILL READY
 TXA
 STA 0C08F,Y ;SEND CHAR
 LDX #0
 RTS

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 49 of 50

;----------------------------------
;
; WRITE TO PRINTER:, CHAR IN A
;
;----------------------------------
PWRITE TAX ;SAVE CHAR IN X
 LDA LFFLAG ;TEST LINE-FEED FLAG
 BPL LFPASS ;PASS IF BIT7=0
 CPX #10. ;IS IT A LINE-FEED?
 BEQ CLRIO ;YES,IGNORE
LFPASS LDY #010 ;SLOT 1
 LDA SLTTYPS+1 ;WHAT KIND OF CARD?
GENW CMP #5 ;PRINTER CARD?
 BEQ WPRN ;YES WRITE TO PRINTER CARD
GENW2 CMPL#4 ;SERIAL CARD?
 BEQ WSER ;YES WRITE TO SER CARD
 CMP #3 ;COM CARD?
 BEQ WCOM ;YES WRITE TO COM CARD
 CMP #6
 BEQ WFIRM
OFFLINE LDX #9
 RTS

;----------------------------------
;
; READ FROM REMOTE:
;
;----------------------------------
RREAD LDA SLTTYPS+2 ;WHAT CARD IN SLOT 2?
 LDY #020
GENR CMP #4 ;SERIAL CARD?
 BEQ RSER ;GET FROM SER CARD
 CMP #3 ;COM CARD?
 BEQ RCOM ;GET FROM COM CARD
 CMP #6
 BEQ RFIRM
 BNE OFFLINE ;CARD NOT RECOG

;----------------------------------
;
; READ FROM COM CARD, Y=N0
;
;----------------------------------
RCOM JSR CONCK ;CHECK FOR CONSOLE CHAR
 LDA 0C08E,Y ;TEST UART STATUS
 LSR A ;TEST BIT 0
 BCC RCOM ; WAIT FOR CHAR
 LDA 0C08F,Y ;GET CHAR
 LDX #0
 RTS

RFIRM LDA #1
 JSR IOWAIT

 Apple II Computer Technical Information

ATTACH-BIOS Document for Apple II Pascal 1.1
Barry Haynes -- Apple Computer Inc. -- January 12, 1980 -- Page 50 of 50

FREAD1 JSR SER1
 PHA
 LDY #0E
 JMP FVEC1

;----------------------------------
;
; READ FROM SERIAL CARD, Y=0N0
;
;----------------------------------
RSER JSR CONCK ;CONSOLE CHAR AVAIL?
 JSR SER1 ;ASSORTED GARBAGE
 JSR 0C84D ;GET A BYTE (SHIFTIN)
 LDA 05B8,X ;GET BYTE 0678+SLOT
 LDX #0
 RTS

FIRMSTATUS PHA
 JSR SER1
 LDY #10
 JMP FVEC1

IOWAIT JSR CONCK
 PHA
 JSR FIRMSTATUS
 PLA
 BCC IOWAIT
 RTS

###
E N D O F D O C U M E N T
###

